High luminescent N,S,P co-doped carbon dots for the fluorescence sensing of extreme acidity and folic acid.
Wenjuan DongLu WangRongrong ZhangChaochao WenRen SuXiaojuan GongWenting LiangPublished in: Dalton transactions (Cambridge, England : 2003) (2023)
Carbon dots are popular luminescent materials because of their excellent fluorescence properties, but the low quantum yield limits their application. Heteroatom doping is a more convenient and popular approach to increase the quantum yield of carbon dots. Here, novel N,S,P heteroatom co-doped carbon dots (N,S,P-CDs) were synthesized by a simple one-step hydrothermal method using m -phenylenediamine, L-cysteine and phosphoric acid as raw materials. The as-prepared N,S,P-CDs showed excellent photoluminescence properties with a fluorescence quantum yield of up to 41%, which greatly encourages their application in fluorescence sensing. The N,S,P-CDs exhibited good fluorescence stability under salt solution, xenon lamp irradiation and ultraviolet lamp irradiation except for a high sensitivity to extreme acidity. The fluorescence intensity of the N,S,P-CDs can be decreased by as much as 85% when the pH of the solution changes from 2.50 to 4.75, that is, a small fluctuation in pH can cause an intense response of the fluorescence of the N,S,P-CDs. Therefore, an excellent fluorescence sensing platform for accurately monitoring the pH of extreme acidity has been constructed. In addition, the N,S,P-CDs can be applied for quantitative detection of folic acid based on the strong quenching effect of folic acid on the fluorescence of the N,S,P-CDs. Good linearity was obtained in the concentration range of 4.85-82.45 μM, with a detection limit of 0.148 μM. The constructed sensing platform was used for the determination of folic acid in actual samples of orange juice, oatmeal and tablets with satisfactory results.