Login / Signup

Actuator behaviour modelling in IoT-Fog-Cloud simulation.

Andras MarkusMate BiroGabor KecskemetiAttila Kertesz
Published in: PeerJ. Computer science (2021)
The inevitable evolution of information technology has led to the creation of IoT-Fog-Cloud systems, which combine the Internet of Things (IoT), Cloud Computing and Fog Computing. IoT systems are composed of possibly up to billions of smart devices, sensors and actuators connected through the Internet, and these components continuously generate large amounts of data. Cloud and fog services assist the data processing and storage needs of IoT devices. The behaviour of these devices can change dynamically (e.g. properties of data generation or device states). We refer to systems allowing behavioural changes in physical position (i.e. geolocation), as the Internet of Mobile Things (IoMT). The investigation and detailed analysis of such complex systems can be fostered by simulation solutions. The currently available, related simulation tools are lacking a generic actuator model including mobility management. In this paper, we present an extension of the DISSECT-CF-Fog simulator to support the analysis of arbitrary actuator events and mobility capabilities of IoT devices in IoT-Fog-Cloud systems. The main contributions of our work are: (i) a generic actuator model and its implementation in DISSECT-CF-Fog, and (ii) the evaluation of its use through logistics and healthcare scenarios. Our results show that we can successfully model IoMT systems and behavioural changes of actuators in IoT-Fog-Cloud systems in general, and analyse their management issues in terms of usage cost and execution time.
Keyphrases
  • healthcare
  • electronic health record
  • cystic fibrosis
  • primary care
  • health information
  • mental health
  • physical activity
  • machine learning
  • climate change
  • quality improvement
  • data analysis