A comparative study of in vitro dose-response estimation under extreme observations.
Xinying FangShouhao ZhouPublished in: Biometrical journal. Biometrische Zeitschrift (2023)
Quantifying drug potency, which requires an accurate estimation of dose-response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median-effect equation to describe the dose-response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose-response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression-based methods have also been introduced in estimation of the median-effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose-response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.