Login / Signup

Assembling Ultrasmall Copper-Doped Ruthenium Oxide Nanocrystals into Hollow Porous Polyhedra: Highly Robust Electrocatalysts for Oxygen Evolution in Acidic Media.

Jianwei SuRuixiang GeKemin JiangYan DongFei HaoZiqi TianGuoxin ChenLiang Chen
Published in: Advanced materials (Deerfield Beach, Fla.) (2018)
Here, a facile and novel strategy for the preparation of Cu-doped RuO2 hollow porous polyhedra composed of ultrasmall nanocrystals through one-step annealing of a Ru-exchanged Cu-BTC derivative is reported. Owing to the optimized surface configuration and altered electronic structure, the prepared catalyst displays a remarkable oxygen evolution reaction (OER) performance with low overpotential of 188 mV at 10 mA cm-2 in acidic electrolyte, an ultralow Tafel slope of 43.96 mV dec-1 , and excellent stability in durability testing for 10 000 cycles, and continuous testing of 8 h at a current density of 10 mA cm-2 . Density functional theory calculations reveal that the highly unsaturated Ru sites on the high-index facets can be oxidized gradually and reduce the energy barrier of rate-determining steps. On the other hand, the Cu dopants can alter the electronic structures so as to further improve the intrinsic OER activity.
Keyphrases