Login / Signup

Reward ignorant modeling of dynamic treatment regimes.

Michael P WallaceErica E M MoodieDavid A Stephens
Published in: Biometrical journal. Biometrische Zeitschrift (2018)
Personalized medicine optimizes patient outcome by tailoring treatments to patient-level characteristics. This approach is formalized by dynamic treatment regimes (DTRs): decision rules that take patient information as input and output recommended treatment decisions. The DTR literature has seen the development of increasingly sophisticated causal inference techniques that attempt to address the limitations of our typically observational datasets. Often overlooked, however, is that in practice most patients may be expected to receive optimal or near-optimal treatment, and so the outcome used as part of a typical DTR analysis may provide limited information. In light of this, we propose considering a more standard analysis: ignore the outcome and elicit an optimal DTR by modeling the observed treatment as a function of relevant covariates. This offers a far simpler analysis and, in some settings, improved optimal treatment identification. To distinguish this approach from more traditional DTR analyses, we term it reward ignorant modeling, and also introduce the concept of multimethod analysis, whereby different analysis methods are used in settings with multiple treatment decisions. We demonstrate this concept through a variety of simulation studies, and through analysis of data from the International Warfarin Pharmacogenetics Consortium, which also serve as motivation for this work.
Keyphrases
  • primary care
  • end stage renal disease
  • newly diagnosed
  • healthcare
  • chronic kidney disease
  • single cell
  • combination therapy
  • venous thromboembolism
  • ejection fraction
  • rna seq
  • decision making
  • electronic health record