Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate).
Roi AsorSurendra W SingaramYael Levi-KalismanMichael F HaganUri RavivPublished in: The European physical journal. E, Soft matter (2023)
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Keyphrases
- electron microscopy
- high resolution
- solid state
- ionic liquid
- drug delivery
- electronic health record
- molecular dynamics
- big data
- disease virus
- protein protein
- binding protein
- smoking cessation
- deep learning
- magnetic resonance imaging
- amino acid
- data analysis
- mass spectrometry
- convolutional neural network
- human milk
- circulating tumor
- small molecule
- single cell
- cancer therapy