Cation Effects on the Adsorbed Intermediates of CO 2 Electroreduction Are Systematic and Predictable.
Elizabeth SargeantParamaconi RodriguezFederico Calle-VallejoPublished in: ACS catalysis (2024)
The electrode-electrolyte interface, and in particular the nature of the cation, has considerable effects on the activity and product selectivity of the electrochemical reduction of CO 2 . Therefore, to improve the electrocatalysis of this challenging reaction, it is paramount to ascertain whether cation effects on adsorbed intermediates are systematic. Here, DFT calculations are used to show that the effects of K + , Na + , and Mg 2+ , on single carbon CO 2 reduction intermediates can either be stabilizing or destabilizing depending on the metal and the adsorbate. Because systematic trends are observed, cation effects can be accurately predicted in simple terms for a wide variety of metals, cations and adsorbed species. These results are then applied to the reduction of CO 2 to CO on four different catalytic surfaces (Au, Ag, Cu, Pd) and activation of weak-binding metals is consistently observed by virtue of the stabilization of the key intermediate *COOH.