Login / Signup

Plasticity in nesting adaptations of a tidal marsh endemic bird.

Bri BenvenutiJennifer WalshKathleen M O'BrienAdrienne I Kovach
Published in: Ecology and evolution (2018)
If individuals can perceive and manage risks, they may alter their behaviors based on prior experience. This expectation may apply to nest site selection of breeding birds, for which adaptive behavioral responses may enhance fitness. Birds that nest in tidal marshes have adapted to the challenges posed primarily by periodic, monthly tidal flooding and secondarily by predation. We investigated adaptive responses in nesting behavior of the saltmarsh sparrow (Ammospiza caudacutus), an obligate tidal-marsh-breeding bird, using 536 nests monitored across 5 years. Using linear mixed effects models, we tested whether nest characteristics differed among nests that were successful, depredated, or flooded, and we investigated whether females made changes in nest structure and placement according to outcome of their previous nesting attempt. Nest characteristics differed among females with different nest fates. Fledged and depredated nests were built higher in the vegetation and in higher elevation areas of the marsh than those that flooded. Successful nests had more canopy cover and were comprised of a lower proportion of high marsh vegetation (Spartina patens) than those that were flooded or depredated. Females with nests that failed due to flooding constructed subsequent nests higher in the vegetation and at higher elevation than those that were successful in their prior attempt, consistent with a response to previous experience. Eighty-five percent of females renested within the average home range core area distance (77 m), indicating a high degree of nest placement fidelity. Females for which nests were depredated in their prior nesting attempt renested at a greater distance than females for which the previous nesting attempts were successful. Our findings suggest saltmarsh sparrows exhibit plasticity in nesting behavior, which may be important for balancing selective pressures in a dynamic environment. This plasticity, however, is insufficient to enable them to adapt to the increased flooding predicted with sea-level rise.
Keyphrases
  • carbon dioxide
  • climate change
  • physical activity
  • body composition
  • atomic force microscopy
  • risk assessment
  • wastewater treatment
  • high intensity
  • human health