Login / Signup

Fluorescent probes based on acridine derivatives and their application in dynamic monitoring of cell polarity variation.

Hai-Yan PengGang ZhangRu SunYu-Jie XuJian-Feng Ge
Published in: The Analyst (2022)
Polarity and viscosity, as important microenvironment parameters, play an essential role in cell metabolism. Therefore, 9-acridine carboxaldehyde reacted with cyano compounds to obtain polarity-sensitive probes 1a-b and viscosity-sensitive probes 1c-d. Among them, with the increase in solvent polarity, the maximum emission wavelength of acridine-dicyanoisophorone-based probe 1a red-shifted from 553 nm to 594 nm, the fluorescence quantum yield increased from 0.5% to 35.6%, and the fluorescence intensity enhanced 38 fold. The acridine-cyanofuranone based probe 1b also has a polarity response similar to 1a. Nevertheless, when the solution viscosity increased from 0.89 cP (100% water) to 856 cP (1% water), the fluorescence intensity of the acridine-tricyanodihydrofuran based probe 1c at 430 nm enhanced 5.6 times. The acridine-cyanobenzothiazole based probe 1d also had a viscosity response similar to 1c. In addition, probes 1a-b were used for further HeLa cell imaging experiments due to their good photostability and the results suggested that probe 1a could locate lipid droplets and probes 1b-c could stain lysosomes. Moreover, probes 1a-b could dynamically monitor the changes in intracellular polarity.
Keyphrases