Identification of Potential miRNA Biomarkers to Detect Hydrocortisone Administration in Horses.
Mio KikuchiTaichiro IshigeYohei MinamijimaKei-Ichi HirotaShun-Ichi NagataTeruaki TozakiHironaga KakoiToshina Ishiguro-OonumaKeiichiro KizakiPublished in: International journal of molecular sciences (2023)
Circulating microRNAs (miRNAs) are stable in bodily fluids and are potential biomarkers of various diseases and physiological states. Although several studies have been conducted on humans to detect drug doping by miRNAs, research on drugs and miRNAs in horses is limited. In this study, circulating miRNAs in horses after hydrocortisone administration were profiled and variations in miRNAs affected by hydrocortisone administration during endogenous hydrocortisone elevation were examined. The miRNAs were extracted from thoroughbred horse plasma before and after hydrocortisone administration and subjected to small RNA sequencing and reverse transcription quantitative PCR (RT-qPCR). RT-qPCR validation was performed for the 20 miRNAs that were most affected by hydrocortisone administration. The effects of elevated endogenous hydrocortisone levels due to exercise and adrenocorticotropic hormone administration were also confirmed. The validation results showed that approximately half of the miRNAs showed the same significant differences as those obtained using small RNA sequencing. Among the twenty miRNAs, two novel miRNAs and miR-133a were found to vary differently between exogenous hydrocortisone administration and endogenous hydrocortisone elevation. This study provides basic knowledge regarding the circulating miRNA profile of horses after hydrocortisone administration and identifies three miRNAs that could potentially be used as biomarkers to detect hydrocortisone administration.