Login / Signup

Role of the Heme Activator Protein Complex in the Sexual Development of Cryptococcus neoformans.

Jin-Young KimYong-Sun Bahn
Published in: mSphere (2022)
The CCAAT-binding heme activator protein (HAP) complex, comprising the DNA-binding heterotrimeric complex Hap2/3/5 and transcriptional activation subunit HapX, is a key regulator of iron homeostasis, mitochondrial functions, and pathogenicity in Cryptococcus neoformans, which causes fatal meningoencephalitis. However, its role in the development of human fungal pathogens remains unclear. To elucidate the role of the HAP complex in C. neoformans development, we constructed hap2 Δ, hap3 Δ, hap5 Δ, and hapX Δ mutants and their complemented congenic MAT α H99 and MAT a YL99 a strains. The HAP complex plays a conserved role in iron utilization and stress responses in cells of both mating types. Deletion of any of the HAP complex components markedly enhances filamentation during bisexual mating. However, the Hap2/3/5 complex, but not HapX, is crucial in repressing pheromone production and cell fusion and is thus a critical repressor of sexual differentiation of C. neoformans. Interestingly, deletion of the heterotrimeric complex transcriptionally regulated both positive and negative regulators in the pheromone-responsive Cpk1 mitogen-activated protein kinase (MAPK) pathway. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the HAP complex physically bound to the CCAAT motif of the CRG1 and GPA2 promoter regions. Notably, the HAP complex was differentially localized depending on the mating type in basal conditions; it was enriched in the nuclei of MAT α cells but diffused in the cytoplasm of MAT a cells. Interestingly, however, a portion of the HAP complex in both mating types relocalized to the cell membrane during mating. In conclusion, the Hap2/3/5 heterotrimeric complex and HapX play major and minor roles, respectively, in repressing the sexual development of C. neoformans in association with the Cpk1 MAPK pathway. IMPORTANCE Cryptococcus neoformans isolates are of two mating types: MAT α strains, which are predominant, and MAT a strains, isolated from the sub-Saharan African region, where cryptococcosis is most abundant and severe. Here, we demonstrated the function of the CCAAT-binding HAP complex (Hap2/3/5/X) as a transcriptional repressor of Cpk1 pathway-related genes in cells of both mating types. Deletion of any HAP complex component markedly enhanced filamentation without affecting normal sporulation. In particular, deletion of the DNA-binding HAP complex components (Hap2/3/5), but not HapX, markedly enhanced pheromone production and cell fusion efficiency, validating its repressive role in the early stage of mating in C. neoformans. The HAP complex regulates the expression of both negative and positive mating regulators and is thus crucial for the regulation of the Cpk1 MAPK pathway during mating. This study provides insights into the complex signaling networks governing the sexual differentiation of C. neoformans.
Keyphrases