The polymorphisms of the PPARD gene modify post-training body mass and biochemical parameter changes in women.
Agata Leońska-DuniecPaweł CieszczykZbigniew JastrzębskiAleksandra JażdżewskaEwelina Lulińska-KuklikWaldemar MoskaKrzysztof FicekMarta NiewczasAgnieszka Maciejewska-SkrendoPublished in: PloS one (2018)
In this study we examined the genotype distribution of the PPARD rs2267668, rs2016520, and rs1053049 alleles in a group of women, before and after the completion of a 12-week training program. There were two significant genotype × training interactions resulting in decreases of total cholesterol (Chol) through training in rs2267668 G allele carriers and significant increases of triglyceride (TGL) levels in rs2267668 AA homozygotes. Carriers of rs2016520 PPARD C allele exhibited a significant decrease in Chol through training with an accompanying decrease in TGL. There was also overrepresentation of PPARD rs1053049 TT homozygotes in the group with higher post-training TGL levels. Moreover (rs2267668/rs2016520/rs1053049) G/C/T haplotype displayed smaller post-training body mass decrease, suggesting that harboring this specific G/C/T haplotype is unfavorable for achieving the desired training-induced body mass changes. On the other hand, the G/C/C haplotype was significantly associated with post-training increase in fat free mass (FFM) and with lower levels of Chol as well as TGL as observed in the blood of the participants in response to applied training. This observation constitutes the second important finding of the study, implying that when specific training-induced biochemical changes are taken into account, some individuals may benefit from carrying the G/C/C haplotype.