Login / Signup

Covalent Organic Framework-Structured Raman Probes for Ultrasensitive In Vivo Bioimaging.

Kai CuiRuike LiMeng LiYuanyuan QiuHaoze WangWenwei WuTize LiuWenxian ZhangZeyu Xiao
Published in: Analytical chemistry (2024)
Organic Raman probes, including polymers and small molecules, have attracted great attention in biomedical imaging owing to their excellent biocompatibility. However, the development of organic Raman probes is usually hindered by a mismatch between their absorption spectra and wavelength-fixed excitation, which makes it difficult to achieve resonance excitation necessary to obtain strong Raman signals. Herein, we introduce a covalent organic framework (COF) into the fine absorption spectrum regulation of organic Raman probes, resulting in their significant Raman signal enhancement. In representative examples, a polymer poly(diketopyrrolopyrrole- p -phenylenediamine) (DPP-PD) and a small molecule azobenzene are transformed into the corresponding COF-structured Raman probes. Their absorption peaks show an accurate match of less than 5 nm with the NIR excitation. As such, the COF-structured Raman probes acquire highly sensitive bioimaging capabilities compared to their precursors with negligible signals. By further mechanism studies, we discover that the crystallinity and size of COFs directly affect the π-conjugation degree of Raman probes, thus changing their bandgaps and absorption spectra. Our study offers a universal and flexible method for improving the signal performance of organic Raman probes without changing their structural units, making it more convenient to obtain the highly sensitive organic Raman probes for in vivo bioimaging.
Keyphrases