Login / Signup

Diagnosing low-mode (ℓ < 6) and mid-mode (6 ≤ ℓ ≤ 60) asymmetries in the post-stagnation phase of laser-direct-drive deuterium-tritium cryogenic implosions on OMEGA.

J BaltazarR BettiK ChurnetskiV GopalaswamyJ P KnauerD PatelHans G RinderknechtR C ShahC StoecklC A WilliamsS P Regan
Published in: The Review of scientific instruments (2023)
Low- and mid-mode perturbations are possible candidates for performance limitations in cryogenic direct-drive implosions on the OMEGA laser at the Laboratory of Laser Energetics. Simulations with a 3D hydrocode demonstrated that hotspot imagers do not show evidence of the shell breakup in the dense fuel. However, these same simulations revealed that the low- and mid-mode perturbations in the dense fuel could be diagnosed more easily in the post-stagnation phase of the implosion by analyzing the peak in the x-ray emission limb at the coronal-fuel interface than before or at the stagnation phase. In experiments, the asymmetries are inferred from gated images of the x-ray emission of the implosion by using a 16-pinhole array imager filtered to record x-ray energies >800 eV and an x-ray framing camera with 40-ps time integration and 20-μm spatial resolution. A modal analysis is applied to the spatial distribution of the x-ray emission from deuterium and tritium cryogenic implosions on OMEGA recorded after the bang time to diagnose the low- and mid-mode asymmetries, and to study the effect that the beam-to-target ratio (R b /R t ) has on the shell integrity.
Keyphrases
  • electron microscopy
  • high resolution
  • dual energy
  • high speed
  • molecular dynamics
  • deep learning
  • single cell
  • high density