Toilet hygiene-review and research needs.
Sarah Elizabeth AbneyKelly R BrightJ McKinneyM Khalid IjazC P GerbaPublished in: Journal of applied microbiology (2021)
The goal of good toilet hygiene is minimizing the potential for pathogen transmission. Control of odours is also socially important and believed to be a societal measure of cleanliness. Understanding the need for good cleaning and disinfecting is even more important today considering the potential spread of emerging pathogens such as SARS-CoV-2 virus. While the flush toilet was a major advancement in achieving these objectives, exposure to pathogens can occur from failure to clean and disinfect areas within a restroom, as well as poor hand hygiene. The build-up of biofilm within a toilet bowl/urinal including sink can result in the persistence of pathogens and odours. During flushing, pathogens can be ejected from the toilet bowl/urinal/sink and be transmitted by inhalation and contaminated fomites. Use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush. Salmonella bacteria can colonize the underside of the rim of toilets and persist up to 50 days. Pathogenic enteric bacteria appear in greater numbers in the biofilm found in toilets than in the water. Source tracking of bacteria in homes has demonstrated that during cleaning enteric bacteria are transferred from the toilet to the bathroom sinks and that these same bacteria colonize cleaning tools used in the restroom. Quantitative microbial risk assessment has shown that significant risks exist from both aerosols and fomites in restrooms. Cleaning with soaps and detergents without the use of disinfectants in public restrooms may spread bacteria and viruses throughout the restroom. Odours in restrooms are largely controlled by ventilation and flushing volume in toilet/urinals. However, this results in increased energy and water usage. Contamination of both the air and surfaces in restrooms is well documented. Better quantification of the risks of infection are needed as this will help determine what interventions will minimize these risks.
Keyphrases
- human health
- risk assessment
- sars cov
- gram negative
- staphylococcus aureus
- heavy metals
- candida albicans
- pseudomonas aeruginosa
- biofilm formation
- antimicrobial resistance
- healthcare
- escherichia coli
- drinking water
- emergency department
- climate change
- physical activity
- machine learning
- intensive care unit
- microbial community
- coronavirus disease
- deep learning
- health risk
- electronic health record
- respiratory syndrome coronavirus