Login / Signup

Tensile cracks can shatter classical speed limits.

Meng WangSonglin ShiJay Fineberg
Published in: Science (New York, N.Y.) (2023)
Brittle materials fail by means of rapid cracks. Classical fracture mechanics describes the motion of tensile cracks that dissipate released elastic energy within a point-like zone at their tips. Within this framework, a "classical" tensile crack cannot exceed the Rayleigh wave speed, [Formula: see text]. Using brittle neo-hookean materials, we experimentally demonstrate the existence of "supershear" tensile cracks that exceed shear wave speeds, [Formula: see text]. Supershear cracks smoothly accelerate beyond [Formula: see text], to speeds that could approach dilatation wave speeds. Supershear dynamics are governed by different principles than those guiding "classical" cracks; this fracture mode is excited at critical (material dependent) applied strains. This nonclassical mode of tensile fracture represents a fundamental shift in our understanding of the fracture process.
Keyphrases
  • smoking cessation
  • hip fracture
  • human milk
  • escherichia coli
  • electron transfer