Filamentous chaperone protein-based hydrogel stabilizes enzymes against thermal inactivation.
Dawei XuSamuel LimYuhong CaoAbner AbadAubrey Nayeon KangDouglas S ClarkPublished in: Chemical communications (Cambridge, England) (2021)
We report a filamentous chaperone-based protein hydrogel capable of stabilizing enzymes against thermal inactivation. The hydrogel backbone consists of a thermostable chaperone protein, the gamma-prefoldin (γPFD) from Methanocaldococcus jannaschii, which self-assembles into a fibrous structure. Specific coiled-coil interactions engineered into the wildtype γPFD trigger the formation of a cross-linked network of protein filaments. The structure of the filamentous chaperone is preserved through the designed coiled-coil interactions. The resulting hydrogel enables entrapped enzymes to retain greater activity after exposure to high temperatures, presumably by virtue of the inherent chaperone activity of the γPFD.