Login / Signup

EZ-InSAR: An easy-to-use open-source toolbox for mapping ground surface deformation using satellite interferometric synthetic aperture radar.

Alexis HrysiewiczXiaowen WangEoghan P Holohan
Published in: Earth science informatics (2023)
Satellite Interferometric Synthetic Aperture Radar (InSAR) is a space-borne geodetic technique that can map ground displacement at millimetre accuracy. Via the new era for InSAR applications provided by the Copernicus Sentinel-1 SAR satellites, several open-source software packages exist for processing SAR data. These packages enable one to obtain high-quality ground deformation maps, but still require a deep understanding of InSAR theory and the related computational tools, especially when dealing with a large stack of images. Here we present an open-source toolbox, EZ-InSAR ( easy-to-use InSAR) , for a user-friendly implementation of InSAR displacement time series analysis with multi-temporal SAR images. EZ-InSAR integrates the three most popular and renowned open-source tools (i.e., ISCE, StaMPS, and MintPy), to generate interferograms and displacement time series by using these state-of-art algorithms within a seamless Graphical User Interface. EZ-InSAR reduces the user's workload by automatically downloading the Sentinel-1 SAR imagery and the digital elevation model data for the user's area of interest, and by streamlining preparation of input data stacks for the time series InSAR analysis. We illustrate the EZ-InSAR processing capabilities by mapping recent ground deformation at Campi Flegrei (> 100 mm·yr -1 ) and Long Valley (~ 10 mm·yr -1 ) calderas with both Persistent Scatterer InSAR and Small-Baseline Subset approaches. We also validate the test results by comparing the InSAR displacements with Global Navigation Satellite System measurements at those volcanoes. Our tests indicate that the EZ-InSAR toolbox provided here can serve as a valuable contribution to the community for ground deformation monitoring and geohazard evaluation, as well as for disseminating bespoke InSAR observations for all.
Keyphrases
  • deep learning
  • mental health
  • electronic health record
  • high resolution
  • primary care
  • hiv infected
  • artificial intelligence