Evaluation of Scatterer Parameters From Ultrasound Scattering Models Taking Into Account Scattering From Nuclei and Cells of Cell-Pellet Biophantoms and Ex Vivo Tumors.
Pauline Muleki-SeyaWilliam D O'BrienPublished in: Ultrasonic imaging (2024)
The Quantitative Ultrasound backscatter coefficient provides the capability to evaluate tissue microstructure parameters. Tissue-based scatterer parameters are extracted using ultrasound scattering models. It is challenging to correlate ultrasound scatterer parameters of tissue structures from optical-measured histology, possibly because of inappropriate scattering models or the presence of multiple scatterers. The objective of this study is to pursue the quantification of pertinent scatterer parameters with scattering models that consider ultrasound scattering from nuclei and cells. The concentric sphere model (CSM) and the structure factor model adapted for two types of scatterers (SFM2) are evaluated for cell-pellet biophantoms and ex vivo tumors of four cell lines: 4T1, JC, LMTK, and MAT. The structure factor model (SFM) was used for comparison. CSM and SFM2 provided scatterer parameters closer to histology (lower relative errors) for nucleus and cell radii and volume fractions than SFM but were not always accompanied by lower dispersion of the scatterer distribution (lower coefficient of variation). CSM and SFM2 quantified cell and nucleus radius and volume fraction parameters with lower relative error compared to SFM. For tumors, CSM provided better results than SFM2.