4D Bioprinting: Technological Advances in Biofabrication.
Gi Hoon YangMiji YeoYoung Won KooGeun Hyung KimPublished in: Macromolecular bioscience (2019)
The development of the three-dimensional (3D) printer has resulted in significant advances in a number of fields, including rapid prototyping and biomedical devices. For 3D structures, the inclusion of dynamic responses to stimuli is added to develop the concept of four-dimensional (4D) printing. Typically, 4D printing is useful for biofabrication by reproducing a stimulus-responsive dynamic environment corresponding to physiological activities. Such a dynamic environment can be precisely designed with an understanding of shape-morphing effects (SMEs), which enables mimicking the functionality or intricate geometry of tissues. Here, 4D bioprinting is investigated for clinical use, for example, in drug delivery systems, tissue engineering, and surgery in vivo. This review presents the concept of 4D bioprinting and smart materials defined by SMEs and stimulus-responsive mechanisms. Then, biomedical smart materials and applications are discussed along with future perspectives.