Login / Signup

Industrial Graphene Coating of Low-Voltage Copper Wires for Power Distribution.

Neeraj MishraYlea VlamidisLeonardo MartiniArianna E LanzaZewdu M GebeyehuAlex JouvrayMarco La SalaMauro GemmiVaidotas MišeikisMatthew PerryKenneth B K TeoStiven FortiCamilla Coletti
Published in: ACS applied engineering materials (2023)
Copper (Cu) is the electrical conductor of choice in many categories of electrical wiring, with household and building installation being the major market of this metal. This work demonstrates the coating of Cu wires-with diameters relevant for low-voltage (LV) applications-with graphene. The chemical vapor deposition (CVD) coating process is rapid, safe, scalable, and industrially compatible. Graphene-coated Cu wires display good oxidation resistance and increased electrical conductivity (up to 1% immediately after coating and up to 3% after 24 months), allowing for wire diameter reduction and thus significant savings in wire production costs. Combined spectroscopic and diffraction analysis indicates that the conductivity increase is due to a change in Cu crystallinity induced by the coating process conditions, while electrical testing of aged wires shows that graphene plays a major role in maintaining improved electrical performances over long periods of time. Finally, graphene coating of Cu wires using an ambient-pressure roll-to-roll (R2R) CVD reactor is demonstrated. This enables the in-line production of graphene-coated metallic wires as required for industrial scale-up.
Keyphrases
  • room temperature
  • carbon nanotubes
  • walled carbon nanotubes
  • wastewater treatment
  • aqueous solution
  • air pollution
  • heavy metals
  • molecular docking
  • risk assessment
  • electron transfer