Inhibition of HDAC6 Activity Alleviates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Potential Role of Peroxiredoxin 1 Acetylation and Redox Regulation.
Yan LengYang WuShao-Qing LeiZhou BinZhen QiuKai WangZhong-Yuan XiaPublished in: Oxidative medicine and cellular longevity (2018)
Patients with diabetes are more vulnerable to myocardial ischemia/reperfusion (MI/R) injury, which is associated with excessive reactive oxygen species (ROS) generation and decreased antioxidant defense. Histone deacetylase 6 (HDAC6), a regulator of the antioxidant protein peroxiredoxin 1 (Prdx1), is associated with several pathological conditions in the cardiovascular system. This study investigated whether tubastatin A (TubA), a highly selective HDAC6 inhibitor, could confer a protective effect by modulating Prdx1 acetylation in a rat model of MI/R and an in vitro model of hypoxia/reoxygenation (H/R). Here, we found that diabetic hearts with excessive HDAC6 activity and decreased acetylated-Prdx1 levels were more vulnerable to MI/R injury. TubA treatment robustly improved cardiac function, reduced cardiac infarction, attenuated ROS generation, and increased acetylated-Prdx1 levels in diabetic MI/R rats. These results were further confirmed by an in vitro study using H9c2 cells. Furthermore, a study using Prdx1 acetyl-silencing mutants (K197R) showed that TubA only slightly attenuated H/R-induced cell death and ROS generation in K197R-transfected H9c2 cells exposed to high glucose (HG), but these differences were not statistically significant. Taken together, these findings suggest that HDAC6 inhibition reduces ROS generation and confers a protective effect against MI/R or H/R injury by modulating Prdx1 acetylation at K197.
Keyphrases
- histone deacetylase
- cell death
- reactive oxygen species
- cell cycle arrest
- diabetic rats
- induced apoptosis
- oxidative stress
- high glucose
- endothelial cells
- dna damage
- signaling pathway
- left ventricular
- endoplasmic reticulum stress
- type diabetes
- weight gain
- wound healing
- transcription factor
- small molecule
- physical activity
- cell proliferation
- body mass index
- high speed