Login / Signup

Enhanced Photodegradation Stability in Poly(butylene adipate-co-terephthalate) Composites Using Organically Modified Layered Zinc Phenylphosphonate.

Jie-Mao WangHao WangErh-Chiang ChenYun-Ju ChenTzong-Ming Wu
Published in: Polymers (2020)
The enhancement of the ultraviolet (UV) photodegradation resistance of biodegradable polymers can improve their application efficacy in a natural environment. In this study, the hexadecylamine modified layered zinc phenylphosphonate (m-PPZn) was used as a UV protection additive for poly(butylene adipate-co-terephthalate) (PBAT) via solution mixing. The results from the Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction analysis of the m-PPZn indicated the occurrence of hexadecylamine intercalation. FTIR and gel permeation chromatography were used to characterize the evolution of the PBAT/m-PPZn composites after being artificially irradiated via a light source. The various functional groups produced via photodegradation were analyzed to illustrate the enhanced UV protection ability of m-PPZn in the composite materials. From the appearance, the yellowness index of the PBAT/m-PPZn composite materials was significantly lower than that of the pure PBAT matrix due to photodegradation. These results were confirmed by the molecular weight reduction in PBAT with increasing m-PPZn content, possibly due to the UV photon energy reflection by the m-PPZn. This study presents a novel approach of improving the UV photodegradation of a biodegradable polymer using an organically modified layered zinc phenylphosphonate composite.
Keyphrases