Machine learning approaches for predicting Cracking Tolerance Index (CTIndex) of asphalt concrete containing reclaimed asphalt pavement.
Lan Ngoc NguyenThanh-Hai LeLinh Quy NguyenVan Quan TranPublished in: PloS one (2023)
One of the various sorts of damage to asphalt concrete is cracking. Repeated loads, the deterioration or aging of material combinations, or structural factors can contribute to the development of cracks. Asphalt concrete's crack resistance is represented by the CT index. 107 CT Index data samples from the University of Transport Technology's lab are measured. These data samples are used to establish a database from which a Machine Learning (ML) model for predicting the CT Index of asphalt concrete can be built. For creating the highest performing machine learning model, three well-known machine learning methods are introduced: Random Forest (RF), K-Nearest Neighbors (KNN), and Multivariable Adaptive Regression Spines (MARS). Monte Carlo simulation is used to verify the accuracy of the ML model, which includes the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). The RF model is the most effective ML model, according to analysis and evaluation of performance indicators. By SHAPley Additive exPlanations based on RF model, the input Aggregate content passing 4.75 mm sieve (AP4.75) has a significant effect on the variation of CT Index value. In following, the descending order is Reclaimed Asphalt Pavement content (RAP) > Bitumen content (BC) > Flash point (FP) > Softening point > Rejuvenator content (RC) > Aggregate content passing 0.075mm sieve (AP0.075) > Penetration at 25°C (P). The results study contributes to selecting a suitable AI approach to quickly and accurately determine the CT Index of asphalt concrete mixtures.