Login / Signup

All-Organic Conductive Biomaterial as an Electroactive Cell Interface.

Ao ZhuangYongjun BianJianwei ZhouSuna FanHuili ShaoXuechao HuBo ZhuYaopeng Zhang
Published in: ACS applied materials & interfaces (2018)
Various attractive materials are being used in bioelectronics recently. In this paper, hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-OH) has been in situ integrated and polymerized on the surface of the regenerated silk fibroin (RSF) film to construct a biocompatible electrode. In order to improve the efficiency of in situ polymerization, sodium dodecyl sulfate (SDS) was adopted as surfactant to construct a well-organized and stable poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) coating, whereas ammonium persulfate was used as oxidant. The effects of dosages of surfactant and oxidant, initial pH value, and monomer concentration on the polymerization were studied. Under the optimal conditions, the RSF/PEDOT-OH film exhibited a square resistance of 3.28 × 105 Ω corresponding to a conductance of 6.1 × 10-3 S/cm. Scanning electron microscope images indicated that PEDOT-OH was deposited uniformly on the surface of the RSF film with SDS. Furthermore, Fourier transform infrared spectroscopy confirmed that interactions existed between the peptide linkages of silk fibroin (SF) macromolecules and PEDOT-OH. The RSF/PEDOT-OH film displayed favorable electrochemical stability, biocompatibility, and fastness. This study provides a feasible method to endow conductivity to RSF materials in various forms. In addition, the conductive layer and biocompatible silk substrate make the RSF/PEDOT-OH biomaterial highly suitable for potential applications in bioelectric devices, sensors, and tissue engineering.
Keyphrases