Increased Transfer Efficiency from Molecular Photonic Wires on Solid Substrates and Cryogenic Conditions.
Sebastian A DiazSean M OliverDavid A HastmanIgor L MedintzPatrick M VoraPublished in: The journal of physical chemistry letters (2018)
Molecular photonic wires (MPWs) are tunable nanophotonic structures capable of capturing and directing light with high transfer efficiencies. DNA-based assembly techniques provide a simple and economical preparation method for MPWs that allows precise positioning of the molecular transfer components. Unfortunately, the longest DNA-based MPWs (∼30 nm) report only modest transfer efficiencies of ∼2% and have not been demonstrated on solid-state platforms. Here, we demonstrate that DNA-based MPWs can be spin-coated in a polymer matrix onto silicon wafers and exhibit a 5-fold increase in photonic transfer efficiency over solution-phase MPWs. Cooling these MPWs to 5 K led to further efficiency increases ranging from ∼40 to 240% depending on the length of the MPW. The improvement of MPW energy transport efficiencies advances prospects for their incorporation in a variety of optoelectronics technologies and makes them an ideal test bed for further exploration of nanoscale energy transfer.