Login / Signup

Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm.

Mohammad Mehdi ArabAbbas YadollahiMaliheh EftekhariHamed AhmadiMohammad AkbariSaadat Sarikhani Khorami
Published in: Scientific reports (2018)
The main aim of the present investigation is modeling and optimization of a new culture medium for in vitro rooting of G×N15 rootstock using an artificial neural network-genetic algorithm (ANN-GA). Six experiments for assessing different media culture, various concentrations of Indole - 3- butyric acid, different concentrations of Thiamine and Fe-EDDHA were designed. The effects of five ionic macronutrients (NH4+, NO3-, Ca2+, K+ and Cl-) on five growth parameters [root number (RN), root length (RL), root percentage (R%), fresh (FW) and dry weight (DW)] were evaluated using the ANN-GA method. The R2 correlation values of 0.88, 0.88, 0.98, 0.94 and 0.87 between observed and predicted values were acquired for all five growth parameters, respectively. The ANN-GA results indicated that among the input variables, K+ (7.6) and NH4+ (4.4), K+ (7.7) and Ca2+ (2.8), K+ (36.7) and NH4+ (4.3), K+ (14.7) and NH4+ (4.4) and K+ (7.6) and NH4+ (4.3) had the highest values of variable sensitivity ratio (VSR) in the data set, for RN, RL, R%, FW and DW, respectively. ANN-GA optimized LS medium for G×N15 rooting contained optimized amounts of 1 mg L-1 IBA, 100, 150, or 200 mg L-1 Fe-EDDHA and 1.6 mg L-1 Thiamine. The efficiency of the optimized culture media was compared to other standard media for Prunus rooting and the results indicated that the optimized medium is more efficient than the others.
Keyphrases
  • neural network
  • pet ct
  • room temperature
  • perovskite solar cells
  • body mass index
  • ionic liquid
  • metal organic framework
  • physical activity
  • big data
  • weight gain
  • artificial intelligence
  • solid state
  • data analysis