A Universal Solution of Controlling the Distribution of Multimaterials during Macroscopic Manipulation via a Microtopography-Guided Substrate.
Changhai LiFengqiang ZhangJia ZhangBin GuoZhenlong WangPublished in: Nanomaterials (Basel, Switzerland) (2018)
Any object can be considered as a spatial distribution of atoms and molecules; in this sense, we can manufacture any object as long as the precise distribution of atoms and molecules is achieved. However, the current point-by-point methods to precisely manipulate single atoms and single molecules, such as the scanning tunneling microscope (STM), have difficulty in manipulating a large quantity of materials within an acceptable time. The macroscopic manipulation techniques, such as magnetron sputtering, molecular beam epitaxy, and evaporation, could not precisely control the distribution of materials. Herein, we take a step back and present a universal method of controlling the distribution of multimaterails during macroscopic manipulation via microtopography-guided substrates. For any given target distribution of multimaterials in a plane, the complicated lateral distribution of multimaterials was firstly transformed into a simple spatial lamellar body. Then, a deposition mathematical model was first established based on a mathematical transformation. Meanwhile, the microtopographic substrate can be fabricated according to target distribution based on the deposition mathematical model. Following this, the deposition was implemented on the substrate according to the designed sequence and thickness of each material, resulting in the formation of the deposition body on the substrate. Finally, the actual distribution was obtained on a certain section in the deposition body by removing the upside materials. The actual distribution can mimic the target one with a controllable accuracy. Furthermore, two experiments were performed to validate our method. As a result, we provide a feasible and scalable solution for controlling the distribution of multimaterials, and point out the direction of improving the position accuracy of each material. We may achieve real molecular manufacturing and nano-manufacturing if the position accuracy of distribution approaches the atomic level.
Keyphrases