Login / Signup

Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening.

Li WuKexin CaoZihui NiShaodong WangWeidong LiXiao LiuZhipeng Chen
Published in: BioFactors (Oxford, England) (2018)
Rhein, a monomeric anthraquinone obtained from the plant herb species Polygonum multiflorum and P. cuspidatum, has been proposed to have anticancer activity. This activity has been suggested to be associated with mitochondrial injury due to the induction of mitochondrial permeability transition pore (mPTP) opening. In this study, the effects of 5-80 μM rhein on cell viability, half-maximal inhibitory concentration (IC50 value), resistance index, and apoptosis were assessed in the liver cancer cell lines SMMC-7721 and SMMC-7721/DOX (doxorubicin-resistant cells). Rhein (10-80 μM) significantly reduced the viability of both cell lines; 20 μM rhein significantly increased sensitivity to DOX and increased apoptosis in SMMC-7721 cells, but reversed resistance to DOX by 7.24-fold in SMMC-7721/DOX cells. Treatment with rhein increased accumulation of DOX in SMMC-7721/DOX cells, inhibited mitochondrial energy metabolism, decreased cellular ATP, and ADP levels, and altered the ratio of ATP to ADP. These effects may result from the binding of rhein with voltage-dependent ion channels (VDACs), adenine nucleotide translocase (ANT), and cyclophilin D, affecting their function and leading to the inhibition of ATP transport by VDACs and ANT. ATP synthesis was greatly reduced and mitochondrial inner membrane potential decreased. Together, these results indicate that rhein could reverse drug resistance in SMMC-7721/DOX cells by inhibiting energy metabolism and inducing mPTP opening. © 2018 BioFactors, 45(1):85-96, 2019.
Keyphrases
  • cell cycle arrest
  • induced apoptosis
  • oxidative stress
  • endoplasmic reticulum stress
  • cell death
  • pi k akt
  • drug delivery
  • body composition
  • binding protein
  • heart rate
  • cancer therapy
  • dna binding