Login / Signup

Low-frequency collective motion of DNA-binding domain defines p53 function.

Guangxu ZhangChao TangLexin PanJunhong Lü
Published in: Proteins (2021)
Most mutations in the DNA-binding domain (DBD) of p53 inactivate or rescue the protein function interacting with the minor groove of DNA. However, how the conformation changes propagating from the mutation sites result in distinct molecular recognition is still not well understood. As the protein mobility is an intrinsic property encrypted in its primary structure, we examined if different structures of wild-type and mutant p53 core domains display any unique patterns of intrinsic mobility. Normal mode calculation was employed to characterize the collective dynamics of DBD in p53 monomer and tetramer as well as their mutants. Intriguingly, the low-frequency collective motions of DBD show similar patterns between the wild-type protein and the rescued mutants. The analysis on atomic backbone fluctuations and low-frequency vibration mode statistics does further support the correlation between the intrinsic collective motion of DBD and the p53 protein function. The mutations in the DBD influence the low-frequency vibration of the p53 tetramer via the change of the collective motions among its four monomers. These findings thus provide new insights for understanding the physical mechanism of p53 protein structure-function relationship and help find the small molecule drug to modulate protein dynamic for disease therapy.
Keyphrases