Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application.
Xian TongYilong DongRunqi ZhouXinkun ShenYuncang LiYue JiangHuiyuan WangJinguo WangJixing LinCuie WenPublished in: Advanced healthcare materials (2024)
Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm -2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm -2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.
Keyphrases
- soft tissue
- bone regeneration
- bone mineral density
- staphylococcus aureus
- drug delivery
- heavy metals
- bone loss
- silver nanoparticles
- induced apoptosis
- gold nanoparticles
- minimally invasive
- anti inflammatory
- ionic liquid
- oxidative stress
- essential oil
- cystic fibrosis
- high resolution
- cell cycle arrest
- pseudomonas aeruginosa
- candida albicans