Login / Signup

Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.).

Zhiyuan LiuTiantian LuChunda FengHelong ZhangZhaosheng XuJames C CorrellWei Qian
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2021)
The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3. There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on "seed" treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.
Keyphrases
  • genome wide
  • copy number
  • dna methylation
  • genome wide identification
  • high resolution
  • mass spectrometry
  • replacement therapy
  • genetic diversity