Login / Signup

Low-Lying Excited States of hqxcH and Zn-hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission.

Masanori EbinaYusuke KondoTakeshi IwasaTetsuya Taketsugu
Published in: Inorganic chemistry (2019)
Excited state intramolecular proton transfer (ESIPT) has been a topic of interest due to its potential to lead to multiple emissions. Although many organic molecules showing ESIPT emission are already known, studies on metal complexes showing ESIPT and their related theoretical understandings are very limited. In this study, we focus on [Zn(hqxc)2(DMSO)2] (Zn-hqxc: hqxc = 3-hydroxy-2-quinoxalinecarboxylate, DMSO = dimethyl sulfoxide), which shows ESIPT emission in the solid state, even though the hqxcH ligand does not show ESIPT emission. To gain insights into the role of the zinc atom and the emission mechanisms, we examined excited states of free hqxcH and the Zn-hqxc complex using time-dependent density functional theory calculations. From the results, it was shown that the zinc atom triggers a structural change of the hqxcH ligand from the lactam form (3,4-dihydro-3-oxo-2-quinoxalinecarboxylic acid) to the enol form (3-hydroxy-2-quinoxalinecarboxylic acid), where the latter form has several stable excited states. Several stable geometries were found for singlet and triplet excited states, suggesting that emissions for the Zn-hqxc complex can be both phosphorescence and fluorescence caused by the enol-enol, keto-keto, and keto-enol forms of the two hqcx ligands in the complex. We found that the photophysical properties of the Zn-hqxc complex are dominated by the ligand due to the filled d10 of Zn(II). The presented results suggest that, to design new ESIPT metal complexes, one possible approach is to combine a metal atom showing ligand centered emission and a ligand that has separate ESIPT and coordination sites.
Keyphrases
  • fluorescent probe
  • solid state
  • energy transfer
  • electron transfer
  • heavy metals
  • density functional theory
  • molecular dynamics
  • risk assessment
  • quantum dots
  • single molecule
  • multidrug resistant