Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge.
Qiao ZengMichael R JonesBernard R BrooksPublished in: Journal of computer-aided molecular design (2018)
In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate approach (RMSE = 1.40 pKa units) and has high correlation (R2 = 0.93), with respect to experiment. This approach can be improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water molecules explicitly can reduce the error by 2-4 pKa units, with respect to experiment, whereas including multiple local minima conformations does not necessarily improve the pKa prediction.