Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2',4,4',6,6'-Hexanitrostilbene.
Wanli FanShiwei YangYongzheng ZhangBing HuangZhengjun GongDongmei WangMeikun FanPublished in: ACS sensors (2020)
2,2',4,4',6,6'-Hexanitrostilbene (HNS) is an explosive with better explosion performance than the well-known 2,4,6-trinitrotoluene (TNT). Surprisingly, unlike other nitroaromatic explosives, there are limited reports regarding the detection of the HNS, let alone sensing reports on surface residues. In this work, a multifunctional flexible SERS sensor was proposed for the indirect detection of HNS based on the transparent fixate gel pads. The sticky and flexible gel pad can effectively collect any HNS surface residues. The inherent amine groups within the gel pad of which the main ingredient is polyurethane can react with HNS to form the orange Meisenheimer-alike complex. The modification of Ag NPs with halide ions was screened for the best SERS performance. KI-modified-citrate-reduced Ag NPs showed selective but enormous SERS enhancement for the HNS derivative. The detection of HNS in the solution phase was explored, and a linear range of 0.01-25 ppm was achieved. The lowest detectable amount (LDA) of HNS was found to be 50 pg, making it one of the most sensitive methods in literature. It was successfully utilized for the HNS residues sensing on fingerprints and bags with LDAs of 5 and 200 ng, respectively. In addition, other explosives including TATB, LLM-105, RDX, HMX, FOX-7, and TNT were also examined to assess the selectivity of the fixate. It was found that the fixate showed excellent selectivity for HNS.