Sulforaphane Attenuates Isoproterenol-Induced Myocardial Injury in Mice.
Lijuan SongMudduluri SrilakshmiYi WuMohamed Saleem Thattakudian Sheik UdumanPublished in: BioMed research international (2020)
The development of isoproterenol- (ISO-) induced oxidative stress in the myocardium results in myocardial necrosis. Sulforaphane (SFN-0.4% of sulforaphane from standardized broccoli sprout extract) possesses chemoprotective, antidiabetic, and antibacterial activities and is also active against cardiovascular-related problems due to its antioxidant properties. This study was designed to investigate the cardioprotective effect of SFN against isoproterenol-induced myocardial injury in mice. Healthy male Swiss albino mice weighing 20-30 g were used in this study. These mice were randomly divided into five groups (n = 6). All the mice in the experimental groups received isoproterenol (5 mg/kg bw, via i.p.) consecutively for 2 days. The mice were treated with SFN (4 mg/kg bw) and α-tocopherol (TCF) (10 mg/kg bw) by oral gavage for 1-7 days as pre- and posttreatment for the prophylactic and treatment groups, respectively. On day 10, the following parameters were studied: heart weight to body weight ratio, antioxidant parameters, and cardiac markers; and mitochondrial enzymes were estimated for cardioprotection. Administration of isoproterenol in mice showed an increased level of serum cardiac markers and heart mitochondrial ATPase enzymes. An increased level of myocardial thiobarbituric acid-reactive substance and decreased levels of endogenous antioxidant enzymes indicated that oxidative stress is induced by isoproterenol in the myocardium. The administration of SFN in mice restored the levels of all biochemical parameters to near-normal levels. Histopathological studies further confirmed the protective effect of sulforaphane. This study concluded that treatment with SFN boosts the endogenous antioxidant activity and prevents isoproterenol-induced myocardial injury.