Login / Signup

Anti-glycation, Carbonyl Trapping and Anti-inflammatory Activities of Chrysin Derivatives.

Seung Hwan HwangHyun Yong KimGuanglei ZuoZhiqiang WangJae-Yong LeeSoon-Sung Lim
Published in: Molecules (Basel, Switzerland) (2018)
The aim of this study was searching anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. The inhibitory effect of chrysin on advanced glycation end-products (AGEs) was investigated by trapping methylglyoxal (MGO), and MGO-conjugated adducts of chrysin were analyzed using LC-MS/MS. The mono- or di-MGO-conjugated adducts of chrysin were present at 63.86 and 29.69% upon 48 h of incubation at a chrysin:MGO ratio of 1:10. The MGO adducted positions on chrysin were at carbon 6 or 6 & 8 in the A ring by classic aldol condensation. To provide applicable knowledge for developing chrysin derivatives as AGE inhibitors, we synthesized several O-alkyl or ester derivatives of chrysin and compared their AGE formation inhibitory, anti-inflammatory, and water solubility characteristics. The results showed that 5,7-di-O-acetylchrysin possessed higher AGE inhibitory and water solubility qualities than original chrysin, and retained the anti-inflammation activity. These results suggested that 5,7-di-O-acetylchrysin could be a potent functional food ingredient as an AGE inhibitor and anti-inflammatory agent, and promotes the development of the use of chrysin in functional foods.
Keyphrases
  • anti inflammatory
  • healthcare
  • photodynamic therapy
  • climate change
  • ionic liquid