Login / Signup

Mapping endemic freshwater fish richness to identify high-priority areas for conservation: An ecoregion approach.

Masoud YousefiArash Jouladeh-RoudbarAnooshe Kafash
Published in: Ecology and evolution (2024)
Freshwater ecosystems are experiencing accelerating global biodiversity loss. Thus, knowing where these unique ecosystems' species richness reaches a peak can facilitate their conservation planning. By hosting more than 290 freshwater fishes, Iran is a major freshwater fish hotspot in the Middle East. Considering the accelerating rate of biodiversity loss, there is an urgent need to identify species-rich areas and understand the mechanisms driving biodiversity distribution. In this study, we gathered distribution records of all endemic freshwater fishes of Iran (85 species) to develop their richness map and determine the most critical drivers of their richness patterns from an ecoregion approach. We performed a generalized linear model (GLM) with quasi-Poisson distribution to identify contemporary and historical determinants of endemic freshwater fish richness. We also quantified endemic fish similarity among the 15 freshwater ecoregions of Iran. Results showed that endemic freshwater fish richness is highest in the Zagros Mountains while a moderate level of richness was observed between Zagros and Alborz Mountains. High, moderate, and low richness of endemic freshwater fish match with Upper Tigris & Euphrates, Namak, and Kavir & Lut Deserts ecoregions respectively. Kura - South Caspian Drainages and Caspian Highlands were the most similar ecoregions and Orumiyeh was the most unique ecoregion according to endemic fish presence. Precipitation and precipitation change velocity since the Last Glacial Maximum were the most important predictors of endemic freshwater fish richness. Areas identified to have the highest species richness have high priority for the conservation of freshwater fish in Iran, therefore, should be considered in future protected areas development.
Keyphrases
  • climate change
  • high intensity