Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy.
Dwaipayan MukhopadhyayPhilippe S NadaudMatthew D ShannonChristopher P JaroniecPublished in: The journal of physical chemistry letters (2017)
We demonstrate rapid quantitative measurements of site-resolved paramagnetic relaxation enhancements (PREs), which are a source of valuable structural restraints corresponding to electron-nucleus distances in the ∼10-20 Å regime, in solid-state nuclear magnetic resonance (NMR) spectra of proteins containing covalent Cu2+-binding tags. Specifically, using protein GB1 K28C-EDTA-Cu2+ mutant as a model, we show the determination of backbone amide 15N longitudinal and 1H transverse PREs within a few hours of experiment time based on proton-detected 2D or 3D correlation spectra recorded with magic-angle spinning frequencies ≥ ∼ 60 kHz for samples containing ∼10-50 nanomoles of 2H,13C,15N-labeled protein back-exchanged in H2O. Additionally, we show that the electron relaxation time for the Cu2+ center, needed to convert PREs into distances, can be estimated directly from the experimental data. Altogether, these results are important for establishing solid-state NMR based on paramagnetic-tagging as a routine tool for structure determination of natively diamagnetic proteins.
Keyphrases
- solid state
- magnetic resonance
- high resolution
- aqueous solution
- single molecule
- metal organic framework
- binding protein
- molecularly imprinted
- solid phase extraction
- protein protein
- high frequency
- computed tomography
- clinical practice
- pet imaging
- magnetic resonance imaging
- dna binding
- big data
- solar cells
- quantum dots
- liquid chromatography
- wild type
- sensitive detection
- positron emission tomography