Near Infrared Light-Emitting Diodes Based on Colloidal InAs/ZnSe Core/Thick-Shell Quantum Dots.
Hossein RoshanDongxu ZhuDavide PiccinottiJinfei DaiManuela De FrancoMatteo BarelliMirko PratoLuca De TrizioLiberato MannaFrancesco Di StasioPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
Heavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core. In the present study, light-emitting diodes (LEDs) based on this type of InAs/ZnSe QDs are fabricated, reaching an external quantum efficiency (EQE) of 13.3%, a turn-on voltage of 1.5V, and a maximum radiance of 12 Wsr -1 m -2 . Importantly, the LEDs exhibit an extensive emission dynamic range, characterized by a nearly linear correlation between emission intensity and current density, which can be attributed to the efficient passivation provided by the thick ZnSe shell. The obtained results are comparable to state-of-the-art PbS QD LEDs. Furthermore, it should be stressed not only that the fabricated LEDs are fully RoHS-compliant but also that the emitting InAs QDs are prepared via a synthetic route based on a non-pyrophoric, cheap, and commercially available as precursor, namely tris(dimethylamino)-arsine.