Login / Signup

Multivalent weak interactions enhance selectivity of interparticle binding.

M R W ScheepersL J van IJzendoornMenno W J Prins
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
Targeted drug delivery critically depends on the binding selectivity of cargo-transporting colloidal particles. Extensive theoretical work has shown that two factors are necessary to achieve high selectivity for a threshold receptor density: multivalency and weak interactions. Here, we study a model system of DNA-coated particles with multivalent and weak interactions that mimics ligand-receptor interactions between particles and cells. Using an optomagnetic cluster experiment, particle aggregation rates are measured as a function of ligand and receptor densities. The measured aggregation rates show that the binding becomes more selective for shorter DNA ligand-receptor pairs, proving that multivalent weak interactions lead to enhanced selectivity in interparticle binding. Simulations confirm the experimental findings and show the role of ligand-receptor dissociation in the selectivity of the weak multivalent binding.
Keyphrases
  • binding protein
  • drug delivery
  • dna binding
  • cancer therapy
  • circulating tumor
  • single molecule
  • cell free
  • oxidative stress
  • cell proliferation
  • molecular dynamics
  • cell cycle arrest