Login / Signup

Intratumoral delivery and therapeutic efficacy of nanoparticle-encapsulated anti-tumor siRNA following intrapulmonary administration for potential treatment of lung cancer.

Yukimune KanehiraKohei TogamiKiyomi IshizawaShingo SatoHitoshi TadaSumio Chono
Published in: Pharmaceutical development and technology (2019)
This study evaluated the delivery efficiency and antitumor effects of the intrapulmonary administration of antitumor small interfering ribonucleic acid (siRNA)-containing nanoparticles to mice with metastatic lung tumor. Fluorescence-labeled, siRNA-containing nanoparticles were administered using Liquid MicroSprayer® to mice with metastatic lung tumors induced by the murine melanoma cell line B16F10. Fluorescent signals in the whole lung and in the tumor region following the intrapulmonary administration of siRNA-containing nanoparticles were stronger than those following intravenous administration. The intrapulmonary administration of nanoparticles containing a mixture of siRNA against MDM2, c-Myc, and vascular endothelial growth factor (VEGF) significantly improved survival and prolonged the survival of mice with metastatic lung tumor. In addition, after the intrapulmonary or intravenous administration of the mixture, the activity levels of interleukin-6 and -12, markers of systemic toxicity, were similar to those of nontreatment. These results indicate that the antitumor siRNA-containing nanoparticles were delivered efficiently and specifically to tumor cells, effectively silencing the oncogenes in the lung metastasis without any significant systemic toxicity.
Keyphrases