Login / Signup

Adsorption of Sb (III) on Oxidized Exfoliated Graphite Nanoplatelets.

Luiza CapraMihaela ManolacheIon IonRusandica StoicaGabriela StingaSanda Maria DonceaElvira AlexandrescuRaluca SomoghiMarian Romeo CalinIleana RadulescuGeorgeta Ramona IvanMarian DeaconuAlina Catrinel Ion
Published in: Nanomaterials (Basel, Switzerland) (2018)
In this work, Sb (III) adsorption on oxidized exfoliated graphite nanoplatelets (ox-xGnP) was evaluated for the first time, to the best of our knowledge. The ox-xGnP were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), Brunauer⁻Emmet⁻Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX), and Zeta potential analysis. The adsorption parameters, such as pH and contact time, were optimized, and the best adsorption capacity obtained was 8.91 mg g-1 at pH = 7.0, 1.0 mg ox-xGnP/100 mL solution, T = 293 K, 1.0 mg L-1, Sb (III), 25 min contact time. The best correlation of the kinetic data was described by a pseudo-first-order kinetic model, with R² = 0.999. The adsorption isotherms of Sb (III) onto ox-xGnP were best described by the Langmuir isotherm model. The thermodynamic parameters showed that the adsorption process was exothermic and spontaneous.
Keyphrases
  • electron microscopy
  • aqueous solution
  • low density lipoprotein
  • healthcare
  • magnetic resonance imaging
  • mass spectrometry
  • deep learning
  • artificial intelligence
  • solid phase extraction