Defect-Related Broadband Emission in Two-Dimensional Lead Bromide Perovskite Microsheets.
Xianli LiXin LianJunhong PangBinbin LuoYonghong XiaoMing-De LiXiao-Chun HuangJin Zhong ZhangPublished in: The journal of physical chemistry letters (2020)
Low-dimensional hybrid lead halide perovskites (LHPs) with broadband emission (BE) have been developed as promising candidates for single-source white-light-emitting diodes. However, the underlying origin of such BE is poorly understood. Herein, dual-emissive [NH3(CH2)8NH3]PbBr4 perovskite microsheets (PMSs) with good dispersibility are successfully prepared. Besides the general narrowband emission (NE) originating from free excitons, BE (∼522 nm) is generated under a Br-poor condition, which is not observed in the single-crystal sample. Unlike self-trapped exciton emission, the BE observed in PMSs is experimentally determined to be related to bromide vacancies (VBr), thereby exhibiting quasisaturation under high excitation intensity. Femtosecond transient absorption spectroscopy first shows that the trapping time of the photogenerated electrons by acceptor-like VBr- is ∼15 ps, slower than that by surface defects (<1 ps). This study provides new insight into the underlying mechanism of BE and an effective approach to manipulating the optical properties of 2D perovskites.