Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury.
Tatsuya FukutaMayumi Ikeda-ImafukuYasunori IwaoPublished in: Molecular pharmaceutics (2023)
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Keyphrases
- ionic liquid
- room temperature
- subarachnoid hemorrhage
- oxidative stress
- ischemia reperfusion injury
- stem cells
- mass spectrometry
- traumatic brain injury
- functional connectivity
- combination therapy
- mesenchymal stem cells
- working memory
- resting state
- bone marrow
- molecularly imprinted
- cerebral ischemia
- replacement therapy
- anti inflammatory