A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat.
Cong LiHuaping TangWei LuoXuemei ZhangYang MuMei DengYaxi LiuQiantao JiangGuoyue ChenJirui WangPengfei QiZhien PuYunfeng JiangYuming WeiYouliang ZhengXiujin LanJian MaPublished in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2020)
A novel, stably expressed, and plant height-independent QTL for spike extension length on 5AS was identified and validated in different populations using a newly developed and tightly linked KASP marker. As an important component of plant height (PH), spike extension length (SEL) plays a significant role in formation of an ideotype in wheat. Despite the fact that numerous loci for SEL in wheat have been reported, our knowledge on PH-independent loci remains to be limited. In this study, two recombinant inbred line (RIL) populations genotyped using the Wheat55K SNP were used to detect quantitative trait loci (QTL) controlling SEL across six environments. A total of 30 QTL for SEL were detected in these two RIL populations, and four of them, i.e., QSEL.sicau-2CN-4D, QSEL.sicau-2SY-4B.2, QSEL.sicau-2SY-4D.1, and QSEL.sicau-2CN-5A, were stably expressed. Genetic and conditional QTL analysis showed that the first three were significantly associated with PH, while the last one, QSEL.sicau-2CN-5A, is independent of PH. Comparison of genetic and physical maps suggested that only QSEL.sicau-2CN-5A located on chromosome arm 5AS is likely a novel QTL. A Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110413733, tightly linked to this novel QTL was developed to successfully confirm its effect in three different genetic populations. Further, in the interval where QSEL.sicau-2CN-5A was located on 'Chinese Spring' wheat reference genome, three promising genes mainly expressed in wheat stem were predicated and they all encode the cytochrome P450 that was demonstrated to be closely associated with SEL elongation in rice. In addition, significant correlations between SEL and PH, spikelet number per spike, and thousand-grain weight were also detected. Altogether, our results broaden our understanding on genetic basis of SEL and will be useful for marker-based selection of lines with different SELs and fine mapping the novel and PH-independent QTL QSEL.sicau-2CN-5A.
Keyphrases
- genome wide
- high density
- dna methylation
- lymph node metastasis
- copy number
- body mass index
- physical activity
- high resolution
- healthcare
- mass spectrometry
- mental health
- air pollution
- gene expression
- genome wide association study
- weight gain
- genetic diversity
- cell free
- transcription factor
- real time pcr
- clinical evaluation