Trophic Transfer and Accumulation of Multiwalled Carbon Nanotubes in the Presence of Copper Ions in Daphnia magna and Fathead Minnow (Pimephales promelas).
Amanda M CanoJonathan D MaulMohammad SaedFahmida IrinSmit A ShahMicah J GreenAmanda D FrenchDavid M KleinJordan CragoJaclyn E Cañas-CarrellPublished in: Environmental science & technology (2018)
The increase in use of nanomaterials such as multiwalled carbon nanotubes (MWCNTs) presents a need to study their interactions with the environment. Trophic transfer was measured between Daphnia magna and Pimephales promelas (fathead minnow, FHM) exposed to MWCNTs with different outer diameter (OD) sizes (MWCNT1 = 8-15 nm OD and MWCNT2 = 20-30 nm OD) in the presence and absence of copper. Pristine FHM were fed D. magna, previously exposed for 3 d to MWCNT1 or MWCNT2 (0.1 mg/L) and copper (0.01 mg/L), for 7 d. D. magna bioaccumulated less MWCNT1 (0.02 μg/g) than MWCNT2 (0.06 μg/g), whereas FHM accumulated more MWCNT1 (0.81 μg/g) than MWCNT2 (0.04 μg/g). In the presence of copper, MWCNT bioaccumulation showed an opposite trend. Mostly MWCNT1 (0.03 μg/g) bioaccumulated in D. magna, however less MWCNT1 (0.21 μg/g) than MWCNT2 (0.32 μg/g) bioaccumulated in FHM. Bioaccumulation factors were higher for MWCNT1s than MWCNT2. However, an opposite trend was observed when copper was added. Plasma metallothionein-2 was measured among treatments; however concentrations were not statistically different from the control. This study demonstrates that trophic transfer of MWCNTs is possible in the aquatic environment and further exploration with mixtures can strengthen the understanding of MWCNT environmental behavior.