Login / Signup

Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine.

Jiaxin CaoSiyihan DuanQian ZhaoGuangyuan ChenZeru WangRuixi LiuLin ZhuTao Duan
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
The effective capture and deposition of radioactive iodine in the spent fuel reprocessing process is of great importance for nuclear safety and environmental protection. Three-dimensional (3D) fiber felt with structural diversity and tunability is applied as an efficient adsorbent with easy separation for iodine capture. Here, a bismuth-based silica aerogel fiber felt (Bi@SNF) was synthesized using a facile hydrothermal method. Abundant and homogeneous Bi nanoparticles greatly enhanced the adsorption and immobilization of iodine. Notably, Bi@SNF demonstrated a high capture capacity of 982.9 mg/g by forming stable BiI 3 and Bi 5 O 7 I phases, which was about 14 times higher than that of the unloaded material. Fast uptake kinetics and excellent resistance to nitric acid and radiation were exhibited as a result of the 3D porous interconnected network and silica aerogel fiber substrate. Adjustable size and easy separation and recovery give the material potential as a radioactive iodine gas capture material.
Keyphrases