Login / Signup

Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau.

Cuicui MuLili LiXiaodong WuFeng ZhangLin JiaQian ZhaoTingjun Zhang
Published in: Scientific reports (2018)
Deep carbon pool in permafrost regions is an important component of the global terrestrial carbon cycle. However, the greenhouse gas production from deep permafrost soils is not well understood. Here, using soils collected from 5-m deep permafrost cores from meadow and wet meadow on the northern Qinghai-Tibetan Plateau (QTP), we investigated the effects of temperature on CO2 and N2O production under aerobic incubations and CH4 production under anaerobic incubations. After a 35-day incubation, the CO2, N2O and CH4 production at -2 °C to 10 °C were 0.44~2.12 mg C-CO2/g soil C, 0.0027~0.097 mg N-N2O/g soil N, and 0.14~5.88 μg C-CH4/g soil C, respectively. Greenhouse gas production in deep permafrost is related to the C:N ratio and stable isotopes of soil organic carbon (SOC), whereas depth plays a less important role. The temperature sensitivity (Q10) values of the CO2, N2O and CH4 production were 1.67-4.15, 3.26-5.60 and 5.22-10.85, without significant differences among different depths. These results indicated that climate warming likely has similar effects on gas production in deep permafrost and surface soils. Our results suggest that greenhouse gas emissions from both the deep permafrost and surface soils to the air will increase under future climate change.
Keyphrases
  • climate change
  • heavy metals
  • room temperature
  • human health
  • microbial community
  • wastewater treatment
  • mass spectrometry
  • optical coherence tomography
  • atomic force microscopy