Login / Signup

Relationship of Surface and Bulk Resistivity in the Case of Mechanically Damaged Fibre Reinforced Red Ceramic Waste Aggregate Concrete.

Marie HorňákováPetr Lehner
Published in: Materials (Basel, Switzerland) (2020)
Electrical resistivity is an important physical property of concrete, directly related to the chloride-induced corrosion process. This paper analyses the surface resistivity (SR) and bulk resistivity (BR) of structural lightweight waste aggregate concrete (SLWAC). The studied concrete mixture contained waste material-red ceramics fine aggregate and artificial expanded clay coarse aggregate. Red ceramic is a frequent waste material remaining after the demolition of buildings or unsatisfactory building material production and is among the least used construction waste. Therefore, its use is desirable in terms of sustainability; in some cases, it can reliably replace the conventional aggregate in a concrete mixture. The relationship between SR and BR was determined in the case of standard specimens and mechanically damaged specimens (to 50% and 100% of ultimate strength capacity-USC). Two different instruments were utilised for the investigation-a 4-point Wenner probe meter and an RCON tester. The results of standard specimens support the theoretically derived correction ratio, but in the case of mechanically damaged specimens, the ratio is more scattered, which is related to the mechanical damage and the amount of fibre.
Keyphrases
  • heavy metals
  • life cycle
  • sewage sludge
  • municipal solid waste
  • fine needle aspiration
  • physical activity
  • oxidative stress
  • air pollution
  • mental health
  • endothelial cells
  • high glucose
  • living cells
  • quantum dots